Transformation and slip behavior of Ni2FeGa

نویسندگان

  • H. Sehitoglu
  • J. Wang
چکیده

Ni2FeGa is a relatively new shape memory alloy (SMA) and exhibits superior characteristics compared to other SMAs. Its favorable properties include low transformation stress, high reversible strains and small hysteresis. The first stage of stress-induced martensitic transformation is from a cubic to a modulated monoclinic phase. The energy barriers associated with the transformation from L21 (cubic) to modulated martensite (10M-martensite) incorporating shear and shuffle are established via atomistic simulations. In addition, the slip resistance in the [111] direction and the dissociation of full dislocations into partials as well as slip in the [001] direction are studied. The unstable stacking fault energy barriers for slip by far exceeded the transformation transition state barrier permitting transformation to occur with little irreversibility. Experiments at the meso-scale on single crystals and transmission electron microscopy were conducted to provide further proof of the pseudoelastic (reversible) behavior and the presence of anti-phase boundaries. The results have implications for design of new shape memory alloys that possess low energy barriers for transformation coupled with high barriers for dislocation slip. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dislocation slip stress prediction in shape memory alloys

We provide an extended Peierls–Nabarro (P–N) formulation with a sinusoidal series representation of generalized stacking fault energy (GSFE) to establish flow stress in a Ni2FeGa shape memory alloy. The resultant martensite structure in Ni2FeGa is L10 tetragonal. The atomistic simulations allowed determination of the GSFE landscapes for the (111) slip plane and 2 1⁄2 101 ; 2 1⁄2 110 ; 6 1⁄2 211...

متن کامل

Fatigue Crack Growth Fundamentals in Shape Memory Alloys

In this study, based on a regression of the crack tip displacements, the stress intensity range in fatigue is quantitatively determined for the shape memory alloy Ni2FeGa. The results are compared to the calculated stress intensity ranges with a micro-mechanical analysis accounting for the transformation-induced tractions. The effective stress intensity ranges obtained with both methods are in ...

متن کامل

Nonlinear Analysis of Flow-induced Vibration in Fluid-conveying Structures using Differential Transformation Method with Cosine-Aftertreatment Technique

In this work, analytical solutions are provided to the nonlinear equations arising in thermal and flow-induced vibration in fluid-conveying structures using Galerkin-differential transformation method with cosine aftertreatment technique. From the analysis, it was established that increase of the length and aspect ratio of the fluid-conveying structures result in decrease the nonlinear vibratio...

متن کامل

Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels

The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...

متن کامل

Martensitic transformation and magnetic properties of Heusler alloy Ni–Fe–Ga ribbon

The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni50+ xFe25− xGa25 (x = −1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012